北京哪间皮炎医院好 http://pf.39.net/bdfyy/bdfzd/210426/8890894.html
以半导体为根基的第三次产业革命浪潮在人工智能和大数据的助力下不断引爆,但眼见摩尔定律濒临极限,新材料的革新势必再上一个阶梯。从年IBM以“铜”取代“铝”后,二十年后的今天,属于“钴”的时代在半导体产业正式登场,将挑起产业转折点的跨时代任务!
半导体产业在这几年有不少关键转折点出现,但多半是在晶体管架构、设备技术上,如3D立体式鳍式晶体管FinFET接棒2D平面晶体管架构、3DNAND架构取代传统的2DNAND技术,这种立体式架构的革新让半导体制程顺利走入14/16纳米等高端技术。
另外,荷兰企业ASML的EUV光刻机即将在7纳米工艺技术上实现量产,这些都在半导体行业中都具有跨越时代的意义,值得历史留名,也因为有这些转折点的产生,摩尔定律的生命因此延续。
图丨钴矿
短短数年,我们经历了FinFET、EUV光刻机的成功,而半导体产业的下一个转折点其实就在不远处,会是由新材料的革新接棒,“钴”时代即将登场,逐渐终结“钨”和“铜”的时代。
10纳米和7纳米节点进入钴导线时代,设备龙头应材推动产业革命的到来
随着半导体制程朝10纳米以下发展,原本以“铜”作为导线材料开始暴露导电速率不足等缺点,让制程工艺技术在10纳米、7纳米节点上遇到瓶颈,因此半导体大厂和设备大厂纷纷投入新材料研发,突破半导体制程技术的限制。
美国公司应用材料(AppliedMaterials,Inc)是全球半导体设备龙头,每年投入的研发经费十分可观,也是最早投入以“钴”作为导线材料取代传统“铜”、“钨”的半导体技术大厂之一,现在,这样的产业革命已经即将要落实在商用化芯片,具有划时代的意义!
在10纳米、7纳米等先进工艺下以“钴”作为导线材料,可以达到导电性能更强、功耗更低,芯片达到体积更小的目标,应材解释,这就是推动“PPAC”(效能performace、功耗power、面积area、成本cost)不断往前,未来甚至往下做到5纳米、3纳米工艺节点。
应用材料解释,不像是晶体管的体积越小,效能会越高,在金属镀层的接点和导线上,反而是体积越小,效能越差,如果把导线比喻成吸管,吸管越小是越容易阻塞,因此,导线材料的选择上有三个关键参考点,分别是填满能力、抗阻力、可靠度。
在30纳米以上的工艺技术,“铝”在填满、可靠度两方面表现不佳,但“铜”则是十分称职,因此仍扮演很重要的材料。
然进入20纳米以下高端工艺后,无论是钨、铝、铜的表现其实都不理想,相较之下,“钴”在填满能力、抗阻力、可靠度三方面是异军突起,尤其在半导体10/7纳米以下的高端技术,“钴”是新一代导线材料之王。
图丨钨铝铜钴的比较
应材分析,晶体管的关键临界尺寸(CriticalDimension)是在15纳米左右,意思是到了该尺寸时,钴与铜的性能参数比达到交叉点,而所谓晶体管的关键临界尺寸,与制程技术工艺节点之间的比例约是2比1,意思是,当15纳米是使用铜材料的关键临界尺寸极限,放大到制程工艺节点上,瓶颈就是7纳米左右。
关于“钨”时代的登场,应材进一步表示,在芯片关键临界尺寸的微缩上,“钨”与“铜”两个金属材料在10纳米以下已经无法完成微缩任务,因为其电性在晶体管接点与局部中段金属导线制程上已逼近物理极限,“钨”与“铜”再也无法导入成为接口,这就成为FinFET无法发挥完全效能的一大瓶颈。
而“钴”这个金属刚好能消除这个瓶颈,但也需要在制程系统策略上进行变革,随着产业将结构微缩到极端尺寸,这些材料的表现会有所不同,而且必须在原子级上,有系统地进行工程,通常是在真空的条件下进行。
英特尔于IEEE国际电子元件会议上首度揭露钴材料细节,将采用10纳米节点
应材在年就投入“钴”材料的开发,花了很多时间通过客户认证,进而导入客户端协助高端工艺的芯片商用化。而究竟是哪些客户使用了“钴”这个深具产业转折点的新材料在关键的半导体制程上?
虽然应材表示不能评论客户的技术。但聪明的读者可以推论,眼下有7纳米和10纳米技术即将问世的半导体大厂,当属台积电、三星、英特尔,其中,英特尔在IEEE国际电子元件会议(IEDM)上,已经公开揭橥了“钴”材料的奥妙。
英特尔已经在IEEE上透露,将在10纳米工艺节点的部分互连层上,导入钴材料的计划细节,在10纳米节点互连的最底部两个层导入钴材料,可以达到5~10倍的电子迁移率改善,并且降低两倍的通路电阻,这算是众多半导体制造大厂中,第一个公开讨论分享钴材料使用在制程技术上的细节的企业。
图丨钨和铜的迁移状况比较
回顾半导体产业上一波的材料革新是15~20年前的0.13微米关键制程。在0.13微米以前,是使用铝作为导线材料,但IBM率先导入铜制程,让金属导线的电阻率降低,且讯号传输速度和功耗成长,在半导体史上是划时代的一页。
半导体业者分析,铜离子的扩散系数高,容易进入介电或是硅材料中,导致电性飘移或是制程腔体遭到污染,但当时的IBM研发出双镶嵌法(DualDamascene),先蚀刻出金属导线所需之沟槽与洞(TrenchVia),并沉积一层薄薄的阻挡层(Barrier)与衬垫层(Liner),之后再将铜回填,如此一来便可防止铜离子扩散,成功迎来半导体的铜制程时代。
20年后的今日,半导体材料再度出现变革,在制程技术上导入“钴”作为新的导体材料,设备商也将迎来新的商机。业界预期,“钴”金属材料将从7/10纳米起步,开始进入半导体导线制程,预计在5纳米工艺结点以下,会扩大采用“钴”材料。
针对“钴”材料,应材有一系列的半导体设备作为对应,包括Endura平台上的物理气相沉积(PVD)、原子层沉积(ALD)、化学气相沉积(CVD)等机台设备。应材的Endura平台是半导体产业史上最成功的金属化系统,累积20年来全球有个客户使用超过4,台的Endura系统。
图丨应用材料Endura系统
再者,应材也界定出一套整合性的钴组合产品,包括Phroducer平台上的退火、ReflexionLKPrimeCMP平台上的平坦化,以及PROVision平台上的电子束检测,这套整合材料解决方案是针对7纳米和以下的制程,可以加速芯片效能,且缩短产品上市的时间。
半导体面临近20年来最重要的材料变革,可以看见技术推进之手已经换人,象征产业领航者的更迭。进入7纳米工艺以下,半导体技术难度快速窜升,包括英特尔的10纳米延迟多年尚未问世,也透露摩尔定律推前的难度大增。
另一个趋势是半导体设备大厂在产业转折当下,扮演越来越重要的关键角色,像是ASML为了解开EUV光刻机的瓶颈,曾找来英特尔、台积电、三星三大客户的集资研发,如今EUV光刻机即将进入7纳米芯片生产。
再者,应材在半导体关键材料“铜”进入“钴”的时代,也扮演领航者的角色,提前多年就大举投入研发,如今将伴随英特尔、台积电、三星的7纳米和10纳米芯片进入商用化,具有举足轻重的地位。
在“后摩尔定律”世代中,为了延续该定律产业产生的经济效益,半导体产业各个环节无不卯足全力接棒演出,晶体管架构的改变、EUV光刻机的诞生、过往不被重视的封装技术也跃升成为主流技术,而材料更是关键环节。“钴”材料从7纳米为起始点,将在5纳米、3纳米中扮演主流角色,引领未来10年的半导体产业时代。
-End-
预览时标签不可点收录于话题#个上一篇下一篇